

smartE5 GmbH Vilsanger 23 D-92245 Kümmersbruck

smartE5 GmbH

Firma 10.05.2022

Referenzanlage Werk II und Werk III Stromerzeugung aus Abwärmevorhandene Abwärme wird noch nicht genutzt

Abwärme nutzbar machen und zusätzlich umweltfreundlich Strom erzeugen

Sehr geehrte Damen und Herren,

wir unterbreiten Ihnen unter untenstehenden Annahmen ein Angebot für die Einbindung des ERS Energie-Rückgewinnungs-System an Ihre vorhandene Querschnittstechnologie. Die für die Anlage errechneten Leistungen beziehen sich auf eine vorhandene Abgasenergiebereitstellung von 585 kW und einer Temperatur von 200 °C / 180 °C Heißwasser auf der Primärseite. Als Wärmesenke steht eine Zuführung mit einem Energiebedarf von 585 kW und einer Temperatur von 20 °C / 40 °C zur Verfügung. Bei den verfügbaren Energiemengen können wir Ihnen eine Plug & Play Containerlösung mit einer elektrischen Nennleistung von 29 kW und einer thermischen Nennleistung von 556 kW schlüsselfertig errichten. Die Gesamtkosten für die Errichtung der Referenzanlage belaufen sich auf netto 349.500 € zzgl. der gelten Umsatzsteuer.

Die Gesamtkosten sind in zwei Bereiche aufgeteilt:

- 1. Liefern von zwei schlüsselfertigen Plug & Play Containerlösungen mit einer Nennleistung von **585 KW** zum Nettokaufpreis von **290.500 €** zzgl. der geltenden Umsatzsteuer.
- 2. Einbindung Plug & Play Containerlösung der in die vorhandene Querschnittstechnologie zu einen Nettofestpreis von **59.000** € zzgl. der geltenden Umsatzsteuer.

Eine detaillierte Leistungsbeschreibung finden Sie auf Seite 4 und 5 dieses Angebotes.

Die Energie-Rückgewinnungs-Systeme (ERS), inklusive jeweils aller erforderlichen Integrations-, Bau- und Infrastrukturmaßnahmen, können in **Deutschland** vom Käufer einen direkten Zuschuss in Höhe von 30 % bzw. 40 % der BAFA erhalten.

Mit freundlichen Grüßen

Dieter Vetter

Wirtschaftlichkeitsberechnung mit thermischer Nutzung

Auftraggeber: Referenzanlage Werk II und Werk III

ERS 200 PPC GWh 1: Berechnungsbeispiel ROI bei Delta T 165 Kelvin

Bei diesem Berechnungstool wird unterstellt, dass 585 KW der bisher ungenutzten Abwärme wieder in nutzbare 585 KW thermische Energie und in neu erzeugte elektrische Energie gewandelt werden.

Durch Eingabe der Abwärmemenge und der Betriebsstunden pro Jahr, an denen ungenutzte Abwärme zur Verfügung steht, erhalten Sie:

Spalte 1 und 2: Die wiedernutzbare thermische Energie und die neu erzeugte elektrische Energie in KW gesamt

Spalte 3 und 4: Die CO₂-Einsparung thermisch und elektrisch in Tonnen pro Jahr

Spalte 5 und 6: Die wiedernutzbare thermische Energie und die neu erzeugte elektrische Energie in KW pro Jahr

Spalte 7: Die wartungsfreie Nutzungsdauer des ERS 200

		1 Schicht Betrieb	2 Schicht Betrieb	3 Schicht Betrieb	4 Schicht Betrieb	
Ansatz Betriebsstunden:		ab 2.000 Stunden	ab 4.000 Stunden	ab 6.000 Stunden	ab 8.000 Stunden	
Betriebsstunden pro Jahr siehe Lastgänge						
Nutzbare thermische Energie in Kilowattstunden	Energie in	thermische Energie in	CO ₂ Einsparung erzeugte elektrische Energie in Tonnen pro Jahr	Nutzbare thermische Energie in kWh pro Jahr	Erzeugte elektrische Energie in kWh pro Jahr	Wartungsfreie Nutzungsdauer in Jahren*
60.696.755	3.194.566	449,05	62,83	2.427.870	127.783	25

^{*}Die im ERS 200 verbaute Technologie ist ohne bewegliche Teile.

Während der gesamten angegebenen Nutzungsdauer ist die verbaute Technologie im thermoelektrischen Generator wartungsfrei.

Das Delta T zwischen der zugeführten Abwärme und der zugeführten Wärmesenke am Generator muss für diese Berechnung mindestens

167 Kelvin betragen.

Die Heißwasserzuführung vom Wärmetauscher zum thermoelektrischen Generator darf 200 Grad Celsius nicht überschreiten. durchschnittliche CO² Bepreisung 60 € pro Tonne bezogen auf wartungsfreie Nutzungsdauer

Stromkosten:		0,316 €	pro KWh, Quelle Statis	tika 2022		
Kosten thermische Energie: 0,036 € pro KWh, Quelle Statistika 2022						
Herstellungskosten ink	Herstellungskosten inklusive Einbindung in die Querschnittstechnologie - thermische Leistung in KW: 556					
			elektrische	Leistung in KW:	29	
Energieeinsparung	g thermische Energie) .				86.189 €
Energieeinsparung	g elektrische Energie):				40.354 €
Energieeinsparung	g gesamt:					126.543 €
Kapitalwert CO ₂	Einsparung jährlic	h				30.713 €
Armortisation Re	Armortisation Return on Invest (ROI) in Jahren:					
Armortisation Re	Armortisation Return on Invest (ROI) in Jahren bei 30% Förderung:					
Armortisation Re	turn on Invest (ROI	in Jahren bei 4	40% Förderung:			1,66
Armortisation Re	Armortisation Return on Invest (ROI) in Jahren mit Kapitalwert CO ₂ :					
Armortisation Return on Invest (ROI) in Jahren bei 30% Förderung und Kapitalwert CO ₂ :						1,56
Armortisation Return on Invest (ROI) in Jahren bei 40% Förderung und Kapitalwert CO ₂ :					1,33	
Kapitalwert CO ₂ gesamt						767.813 €

Wirtschaftlichkeitsberechnung mit thermischer Nutzung aktueller Gaspreis

Auftraggeber: Referenzanlage Werk II und Werk III

ERS 200 PPC GWh 1: Berechnungsbeispiel ROI bei Delta T 165 Kelvin

Bei diesem Berechnungstool wird unterstellt, dass 585 KW der bisher ungenutzten Abwärme wieder in nutzbare 585 KW thermische Energie und in neu erzeugte elektrische Energie gewandelt werden.

Durch Eingabe der Abwärmemenge und der Betriebsstunden pro Jahr, an denen ungenutzte Abwärme zur Verfügung steht, erhalten Sie:

Spalte 1 und 2: Die wiedernutzbare thermische Energie und die neu erzeugte elektrische Energie in KW gesamt

Spalte 3 und 4: Die CO₂-Einsparung thermisch und elektrisch in Tonnen pro Jahr

Spalte 5 und 6: Die wiedernutzbare thermische Energie und die neu erzeugte elektrische Energie in KW pro Jahr

Spalte 7: Die wartungsfreie Nutzungsdauer des ERS 200

		1 Schicht Betrieb	2 Schicht Betrieb	3 Schicht Betrieb	4 Schicht Betrieb	
Ansatz Betriebsstunden:		ab 2.000 Stunden	ab 4.000 Stunden	ab 6.000 Stunden	ab 8.000 Stunden	
Betriebsstunden pro Jahr siehe Lastgänge						
Nutzbare thermische Energie in Kilowattstunden	Energie in	•	CO ₂ Einsparung erzeugte elektrische Energie in Tonnen pro Jahr	Nutzbare thermische Energie in kWh pro Jahr	DIDKTRISCHO	Wartungsfreie Nutzungsdauer in Jahren*
60.696.755	3.194.566	449,05	62,83	2.427.870	127.783	25

^{*}Die im ERS 200 verbaute Technologie ist ohne bewegliche Teile.

Während der gesamten angegebenen Nutzungsdauer ist die verbaute Technologie im thermoelektrischen Generator wartungsfrei.

Das Delta T zwischen der zugeführten Abwärme und der zugeführten Wärmesenke am Generator muss für diese Berechnung mindestens

167 Kelvin betragen.

Die Heißwasserzuführung vom Wärmetauscher zum thermoelektrischen Generator darf 200 Grad Celsius nicht überschreiten. durchschnittliche CO² Bepreisung 60 € pro Tonne bezogen auf wartungsfreie Nutzungsdauer

Stromkosten:		0,316 €	pro KWh, Quelle Statis	tika 2022		
Kosten thermische Energie: 0,079 € pro KWh, Quelle Statistika 2022			tika 2022			
Herstellungskosten ink	Herstellungskosten inklusive Einbindung in die Querschnittstechnologie - thermische Leistung in KW: 556					
			elektrische	Leistung in KW:	29	
Energieeinsparung	g thermische Energie) .				191.559 €
Energieeinsparung	g elektrische Energie):				40.354 €
Energieeinsparung	g gesamt:					231.913 €
Kapitalwert CO ₂	Einsparung jährlic	h				30.713 €
Armortisation Return on Invest (ROI) in Jahren:						1,51
Armortisation Re	Armortisation Return on Invest (ROI) in Jahren bei 30% Förderung:					
Armortisation Re	turn on Invest (ROI	in Jahren bei 4	40% Förderung:			0,90
Armortisation Re	Armortisation Return on Invest (ROI) in Jahren mit Kapitalwert CO ₂ :					
Armortisation Return on Invest (ROI) in Jahren bei 30% Förderung und Kapitalwert CO ₂ :					0,93	
Armortisation Return on Invest (ROI) in Jahren bei 40% Förderung und Kapitalwert CO ₂ :					0,80	
Kapitalwert CO ₂ gesamt						767.813 €

Inhalte zum Angebot

Angebot Nr. 20220504-1

1. Angebot

1.1 Energie-Rückgewinnungs-System als schlüsselfertige Plug & Play Containerlösung mit einer elektrischen Nennleistung von **29.000 Watt** und einer thermischen Nutzung von **556.000 Watt**. Die angegebene Nennleistung bezieht sich auf eine anliegende Temperaturdifferenz an den Primär – und Sekundäraluminiumprofilen von 160 Kelvin. Die Einbindung unserer Anlage in die vorhandene Querschnittstechnologie erfolgt durch unser Fachpersonal und ist im Lieferumfang enthalten. Ebenfalls die Inbetriebnahme der Anlage.

Pos.	Menge	Einheit	Energieerzeugung: Komponenten	Gesamt
1	2	Stück	Plug & Play Container (12,00 m x 2,44 m x 2,40 m)	
2	30	Stück	1000 Watt ERS Generator	
3	1	Stück	Fachplanung Hydraulik	
4	1	Stück	Verrohrung, Sicherheitseinrichtungen	
5	1	Stück	Fachplanung elektrisch	
6	15	Stück	Wechselrichter 2100 Watt AC	
7	2	Stück	Schaltschrank	
8	30	Stück	Klemmböcke, Kanäle, Kleinmaterial, usw.	
9	60	Stück	Leistungsmesser DC mit 12 Volt Netzteil	
10	1	Stück	H-Tronic Pumpensteuerung thermisch	
11	1	Stück	Powerdog L	
12	1	Stück	Reglungstechnik	
13	1	Stück	Zähler	
14	30	Stück	Sensorik - Messfühler	
15	1	Stück	Handbuch	
16	1	Stück	Bedienungsanleitung	
17	1	Stück	CE Kennzeichnung Begleitdokumentation	

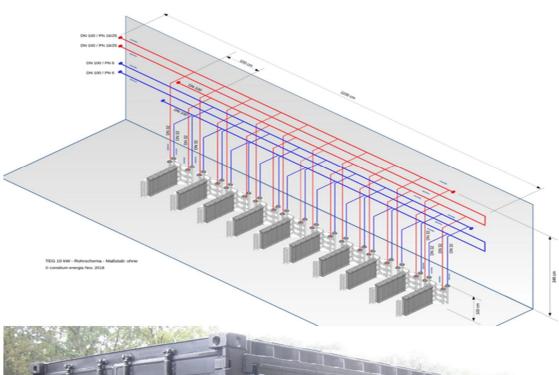
smartE5 GmbH

1. 2 Leistungsdiagramm

Bei Veränderung des Delta T (Differenztemperatur zwischen zugeführter und abgeführter Temperatur in den jeweiligen geschlossen Kreisläufen zum Generator) und bei unveränderter Energiemengenzuführung von **585.000 Watt** können aufgrund der Anzahl und Anordnung der eingebauten Generatoren untenstehende elektrische Leistungen erzeugt werden. Im gleichen Verhältnis verringert oder erhöht sich die wieder nutzbare thermische Energie.

Energiezuführung	Energieabführung	Delta T	elektr. Leistung Watt
Angaben in Grad Celsius	Grad Celsius	Kelvin	
150 / 140	12 / 22	128	10.000
160 / 150	12 / 22	138	11.000
170 / 160	12 / 22	148	13.100
180 / 170	12 / 22	158	15.200
190 / 180	12 / 22	168	17.300
200 / 190	12 / 22	178	19.600

2. Einbindung in die vorhandene Querschnittstechnologie


Pos.	Menge	Einheit	Energieerzeugung: Komponenten	Gesamt			
1. hydra	1. hydraulische Anbindung						
1 a)	1	Stück	Fachplanung Hydraulik				
1 b)	3	Stück	Verrohrung, Sicherheitseinrichtungen				
1 c)	1	Stück	Wilo Pumpe Primär				
1 d)	1	Stück	Wilo Pumpe Sekundär				
1 e)	1	Stück	Durchflussmengenzähler				
2. Ener	giewandlur	g elektris	sch				
2 a)	1	Stück	Wärmetauscher Abgas				
2 b)	0	Stück	Plattenwärmetauscher Wasser				
1 + 2	64	Stunden	Montageaufwand				
3. Ener	3. Energiewandlung elektrisch						
3 a)	1		Fachplanung elektrisch				
3 b)	3		Schaltschrank				
3 c)	15		Klemmböcke, Kanäle, Kleinmaterial, usw.				

smartE5 GmbH

Energie-Rückgewinnungs-System ERS 200 im Plug & Play Container (PPC)

smartE5 GmbH

Temperaturabhängige Umwälzpumensteuerung Steuerung der Primär- und Sekundärumwälzpumpen in den geschlossenen Kreisläufen

Monitoringsystem für acht unterschiedliche Datenerfassungen, z.B. Temperatur, elektrische Leistung, Durchflussmenge

smartE5 GmbH

Monitoringsystem:

Aufzeichnung der Temperaturen Energiezuführung primär und sekundär Energierückführung primär und sekundär

Monitoringsystem Datenerfassungen: Temperaturen, Durchflussmengen, Energiemengen Erzeugte elektrische Leistung

Anordnung der Komponenten für die Steuerung und Überwachung:

Wechselrichter für die Wandlung von Gleich-/ in Wechselspannung zur Netzeinspeisung oder Eigenverbrauch

Monitoringsystem,

Temperaturabhängige Umwälzpumpensteuerung, Elektronischer Verteiler für Temperaturmessung

